
On the coefficients of differentiated expansions and derivatives of Jacobi polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 3467

(http://iopscience.iop.org/0305-4470/35/15/308)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 02/06/2010 at 10:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 3467–3478 PII: S0305-4470(02)29188-X

On the coefficients of differentiated expansions and
derivatives of Jacobi polynomials

E H Doha

Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

E-mail: eiddoha@frcu.eun.eg

Received 26 September 2001, in final form 18 January 2002
Published 5 April 2002
Online at stacks.iop.org/JPhysA/35/3467

Abstract
A formula expressing explicitly the derivatives of Jacobi polynomials of any
degree and for any order in terms of the Jacobi polynomials themselves is
proved. Another explicit formula, which expresses the Jacobi expansion
coefficients of a general-order derivative of an infinitely differentiable function
in terms of its original Jacobi coefficients, is also given. The results for
the special case of ultraspherical polynomials are considered. The results
for Chebyshev polynomials of the first and second kinds and for Legendre
polynomials are also noted.

An application of how to use Jacobi polynomials for solving ordinary and
partial differential equations is described.

PACS number: 02.30.Gp

Mathematics Subject Classification: 42C10; 33A50; 65L05; 65L10

1. Introduction

Classical orthogonal polynomials are used extensively for the numerical solution of differential
equations in spectral and pseudospectral methods (see for instance Ben-Yu 1998, Coutsias et al
1996, Doha 1990, 2000, Doha and Helal 1997, Doha and Al-Kholi 2001, Haidvogel and Zang
1979, Siyyam and Syam 1997). In particular, Lewanowicz (1986, 1991, 1992) has presented
three different methods for obtaining recurrence relations for the expansion coefficients in
Jacobi series solutions of linear ordinary differential equations with polynomial coefficients.
Solutions of such recurrence relations enable one to obtain spectral approximations in Jacobi
series expansions for the differential equations under consideration.

The importance of Sturm–Liouville problems for spectral methods lies in the fact that the
spectral approximation of the solution of a differential equation is usually regarded as a finite
expansion of eigenfunctions of a suitable Sturm–Liouville problem.

0305-4470/02/153467+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3467

http://stacks.iop.org/ja/35/3467


3468 E H Doha

It is proven that the Jacobi polynomials are precisely the only polynomials arising as
eigenfunctions of a singular Sturm–Liouville problem (see Canuto et al 1988, section 9.2).
This class of polynomials comprises all the polynomial solutions to singular Sturm–Liouville
problems on [−1, 1]. We have therefore motivated our interest in Jacobi polynomials.

If these polynomials are used as basis functions, then the rate of decay of the expansion
coefficients is determined by the smoothness properties of the function being expanded and not
by any special boundary conditions satisfied by the function itself. If the function of interest is
infinitely differentiable, then the nth expansion coefficient will decrease faster than any finite
power of (1/n) as n → ∞ (cf Gottlieb and Orszag 1977).

For the spectral Galerkin or spectral collocation methods; explicit formulae for the
expansion coefficients of the derivatives in terms of the original expansion coefficients of the
function are often needed. Also explicit expressions for the derivatives of the basis functions
in terms of the basis functions themselves are required.

Two explicit formulae expressing the Chebyshev (Legendre) coefficients of a general-
order derivative of an infinitely differentiable function in terms of its Chebyshev (Legendre)
coefficients are given by Karageorghis (1988a) and by Phillips (1988).

A more general formula for ultraspherical coefficients is given by Karageorghis and
Phillips (1989/1992). Such a formula has been stated in a more compact form and proved
in a simple way by Doha (1991). A formula expressing explicitly the derivatives of
ultraspherical polynomials in terms of ultraspherical polynomials themselves is also given—
with its important special cases—for Chebyshev and Legendre polynomials by Doha (1991).

A more general situation which often arises in the numerical solution of differential
equations with polynomial coefficients in spectral and pseudospectral methods is the
evaluation of the expansion coefficients of the moments of high-order derivatives of infinitely
differentiable functions. A formula for the shifted Chebyshev coefficients of the moments
of general-order derivatives of an infinitely differentiable function is given by Karageorghis
(1988b). Corresponding results for Chebyshev polynomials of the first and second kinds,
Legendre polynomials and ultraspherical polynomials are given by Doha (1994), Doha and
El-Soubhy (1995) and Doha (1998) respectively.

Up to now, and to the best of our knowledge, many formulae corresponding to those
mentioned previously are not known and are traceless in the literature for the Jacobi expansions.
This also motivates our interest in such polynomials. Another motivation is that the theoretical
and numerical analysis of numerous physical and mathematical problems very often requires
the expansion of an arbitrary polynomial or the expansion of an arbitrary function with its
derivatives and moments into a set of orthogonal polynomials. This is in particular true for
Jacobi polynomials.

In section 2 we give relevant properties of Jacobi polynomials and in section 3 we describe
how they are used to solve boundary value problems with the Galerkin method. In section 4
we prove the main results of the paper, which are the following.

(i) An explicit expression for the derivatives of Jacobi polynomials of any degree and for any
order in terms of the Jacobi polynomials themselves.

(ii) An explicit formula for the coefficients of a general-order derivative of an expansion in
Jacobi polynomials in terms of the coefficients of the original expansion.

In section 5 we explain how the Jacobi polynomials are used to solve differential equations by
the collocation method. Two numerical examples for the solution of linear partial differential
equations in two independent variables by using the collocation method are given in section 6.
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2. Some relevant properties of Jacobi polynomials

The Jacobi polynomials associated with the real parameters (α > −1, β > −1) (see Szegö
1985) are a sequence of polynomials P

(α,β)
n (x)(n = 0, 1, 2, . . .), each respectively of degree

n, satisfying the orthogonality relation∫ 1

−1
(1 − x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx =

{
0 m �= n,

hn m = n,

where

hn = 2α+β+1 �(n + α + 1) �(n + β + 1)

(2n + α + β + 1) n! �(n + α + β + 1)
. (1)

The Jacobi polynomials are eigenfunctions of the following singular Sturm–Liouville
problem:

(1 − x2)u′′(x) + [β − α − (α + β + 2)x]u′(x) + n(n + α + β + 1)u(x) = 0.

A consequence of this is that spectral accuracy can be achieved for expansions in Jacobi
polynomials. For our present purposes it is convenient to standardize the Jacobi polynomials
so that

P (α,β)
n (1) = �(n + α + 1)

n! �(α + 1)
, P (α,β)

n (−1) = (−1)n �(n + β + 1)

n! �(β + 1)
.

In this form the polynomials may be generated using the recurrence relation

2(n + 1)(n + λ)(2n + λ − 1)P
(α,β)

n+1 (x) = (2n + λ − 1)3 xP (α,β)
n (x)

+ (α2 − β2)(2n + λ)P (α,β)
n (x) − 2(n + α)(n + β)(2n + λ + 1)P

(α,β)

n−1 (x), (2)

(n = 1, 2, . . .),

starting from P
(α,β)

0 (x) = 1 and P
(α,β)

1 (x) = 1
2 [α −β + (λ + 1)x], or obtained from Rodrigue’s

formula

P (α,β)
n (x) = (−1)n

2n n!
(1 − x)−α(1 + x)−βDn[(1 − x)α+n(1 + x)β+n], (3)

where

λ = α + β + 1, (a)k = �(a + k)/�(a), D ≡ d

dx
.

Of these polynomials, the most commonly used are the Gegenbauer ultraspherical
polynomials C(α)

n (x), the Chebyshev polynomials Tn(x) of the first kind, the Legendre
polynomials Pn(x) and the Chebyshev polynomials of the second kind Un(x). These
orthogonal polynomials are interrelated to the Jacobi polynomials by the following relations:

C(α)
n (x) = n! �

(
α + 1

2

)
�(n + α + 1

2 )
P

(α− 1
2 ,α− 1

2 )
n (x), Tn(x) = n!

√
π

�
(
n + 1

2

)P (− 1
2 ,− 1

2 )
n (x),

Pn(x) = P (0,0)
n (x), Un(x) = (n + 1)!

√
π

2 �
(
n + 3

2

) P
( 1

2 , 1
2 )

n (x).

(4)

Suppose now we are given a function f (x) which is infinitely differentiable in the closed
interval [−1, 1]; then we may represent it in the form

f (x) =
∞∑

n=0

anP
(α,β)
n (x). (5)
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Further, let a
(q)
n denote the Jacobi coefficients of the qth derivative of f (x); that is

f (q)(x) = dqf (x)

dxq
=

∞∑
n=0

a(q)
n P (α,β)

n (x). (6)

It is possible to derive a recurrence relation involving the Jacobi coefficients of successive
derivatives of f (x). Let us write

d

dx

∞∑
n=0

a(q−1)
n P (α,β)

n (x) =
∞∑

n=0

a(q)
n P (α,β)

n (x),

then use of the identity

P (α,β)
n (x) = 2

(n + λ − 1)(2n + λ − 1)3
[(n + λ − 1)2 (2n + λ − 1)DP

(α,β)

n+1 (x)

+ (α − β)(n + λ − 1)(2n + λ)DP (α,β)
n (x)

− (n + α)(n + β)(2n + λ + 1)DP
(α,β)

n−1 (x)], n � 1, (7)

leads to the recurrence relation
(n + λ − 1)

(2n + λ − 1)(2n + λ − 2)
a

(q)

n−1 +
(α − β)

(2n + λ + 1)(2n + λ − 1)
a(q)

n

− (n + α + 1)(n + β + 1)

(2n + λ + 2)(2n + λ + 1)(n + λ)
a

(q)

n+1 = 1

2
a(q−1)

n , q � 1, n � 1, (8)

where a(0)
n = an.

3. The Galerkin method for a boundary value problem

Consider the solution of the differential equation

u′′(x) + γ u(x) = g(x), x ∈ [−1, 1], (9)

subject to u(±1) = 0, where γ is a known scalar. Suppose that we approximate u(x) by a
truncated series expansion of Jacobi polynomials

uN(x) =
N∑

n=2

an

[
P (α,β)

n (x) −
(

1 + x

2

)
P (α,β)

n (1) −
(

1 − x

2

)
P (α,β)

n (−1)

]
; (10)

we seek to determine an using the Galerkin method. Note that the boundary conditions are
automatically satisfied. It is not difficult to put uN(x) in the form

uN(x) =
N∑

n=2

an[P (α,β)
n (x) − rn P

(α,β)

0 (x) − sn P
(α,β)

1 (x)], (11)

where

rn = [(β + 1)(α + 1)n + (−1)n(α + 1)(β + 1)n]/n! (λ + 1),

sn = [(α + 1)n − (−1)n(β + 1)n]/n! (λ + 1).

Since u′′
N(x) is a polynomial of degree at most N − 2 we may write

u′′
N(x) =

N−2∑
n=0

a(2)
n P (α,β)

n (x). (12)

The coefficients an are chosen so that uN(x) satisfies

u′′
N(x) + γ uN(x) = gN(x), (13)
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where

gN(x) =
N∑

n=0

dnP
(α,β)
n (x).

Substituting (11) and (12) into (13), multiplying by (1 − x)α(1 + x)βP
(α,β)
m (x), m = 0,

1, . . . , N − 2, and integrating over the interval [−1, 1] yields

a
(2)
0 − γ

N∑
n=2

rnan = d0,

a
(2)
1 − γ

N∑
n=2

snan = d1,

a(2)
m + γ am = dm, m = 2, . . . , N − 2.

(14)

Thus there are (N − 1) equations for the (N − 1) unknowns a2, a3, . . . , aN . In order to obtain
a solution to (13), it is only necessary to solve (14) for the (N − 1) unknown coefficients an

(2 � n � N).
The coefficients a(2)

n of the second derivative of the approximation uN(x) are related to
the coefficients an of uN(x) by invoking (8) with q = 1 and 2. In the next section we show
how the coefficients of any derivative may be expressed in terms of the original expansion
coefficients. This allows us to replace a(2)

m in (14) by an explicit expression in terms of an.
In this way we can set up a linear system for an (2 � n � N) which may be solved using
standard direct solvers.

Returning to the difference equation (8), and for computing purposes, we see that this
equation is not easy to use, since the coefficients on the left-hand side are functions of n.
No obvious direct method is available for solving this equation, therefore we resort to the
following alternative method that enables us to express a

(q)
n in terms of the original expansion

coefficients ak, k = 0, 1, 2, . . . .

4. The derivatives of P (α,β)
n (x) and the relation between the coefficients a(q)

n and an

The main objective of this section is to prove the following theorem for the derivatives of
P

(α,β)
n (x) and the coefficients a

(q)
n .

Theorem.

DqP (α,β)
n (x) = 2−q(n + α + β + 1)q

n−q∑
i=0

Cn−q,i(α + q, β + q, α, β)P
(α,β)

i (x), (15)

where

Cn−q,i(α + q, β + q, α, β) = (n + q + α + β + 1)i (i + q + α + 1)n−i−q �(i + α + β + 1)

(n − i − q)! �(2i + α + β + 1)

× 3F2

(−n + q + i, n + i + q + α + β + 1, i + α + 1
; 1

i + q + α + 1, 2i + α + β + 2

)
,

and

a(q)
n = 2−q

∞∑
i=0

(n + i + q + α + β)q Cn+i,n(α + q, β + q, α, β) an+i+q, n � 0, q � 1,

(16)
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where

Cn+i,n(α + q, β + q, α, β) = (n + i + 2q + α + β)n (n + α + q + 1)i �(n + α + β + 1)

i! �(2n + α + β + 1)

× 3F2

(−i, 2n + i + 2q + α + β + 1, n + α + 1
; 1

n + q + α + 1, 2n + α + β + 2

)
.

Proof. It is well known that P
(γ,δ)
n (x) may be defined by

P (γ,δ)
n (x) = (1 + γ )n

n!
2F1

( −n, n + γ + δ + 1;
1 + γ ; (1 − x)/2

)

= (1 + γ )n

(1 + γ + δ)n

n∑
k=0

(1 + γ + δ)n+k

k! (n − k)! (1 + γ )k

(
x − 1

2

)k

and, accordingly, we obtain by direct differentiation that

DP (γ,δ)
n (x) = (n + γ + δ + 1)

2
P

(γ +1,δ+1)

n−1 (x),

and therefore

DkP (γ,δ)
n (x) = 2−k(n + γ + δ + 1)k P

(γ +k,δ+k)

n−k (x). (17)

In order to complete the proof of the theorem we need the following lemma.

Lemma. Suppose

P (γ,δ)
n (x) =

n∑
k=0

Cnk(γ, δ, α, β)P
(α,β)

k (x), (18)

then

Cnk(γ, δ, α, β) = (n + γ + δ + 1)k (k + γ + 1)n−k �(k + α + β + 1)

(n − k)! �(2k + α + β + 1)

× 3F2

(−n + k, n + k + γ + δ + 1, k + α + 1
; 1

k + γ + 1, 2k + α + β + 2

)
. (19)

(For proof, see Andrews et al 1999.)

From the lemma and the identity (17), we obtain

DiP (γ,δ)
n (x) = 2−i (n + γ + δ + 1)i

n−i∑
k=0

Cn−i,k(γ + i, δ + i, α, β)P
(α,β)

k (x),

and in particular,

DqP (α,β)
n (x) = 2−q(n + α + β + 1)q

n−q∑
k=0

Cn−q,k(α + q, β + q, α, β)P
(α,β)

k (x),

which proves the first part of the theorem.
Now, on differentiating (5) q times and making use of (15), we find

f (q)(x) =
∞∑

n=q

anD
qP (α,β)

n (x)

= 2−q
∞∑

n=q

(n + α + β + 1)q an

n−q∑
k=0

Cn−q,k(α + q, β + q, α, β)P
(α,β)

k (x). (20)
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Expanding (20) and collecting similar terms, we obtain

f (q)(x) = 2−q
∞∑

n=0

[ ∞∑
i=0

(n + i + q + α + β + 1)q Cn+i,n(α + q, β + q, α, β) an+i+q

]
P (α,β)

n (x).

(21)

Identifying (21) with (6) gives immediately

a(q)
n = 2−q

∞∑
i=0

(n + i + q + α + β + 1)q Cn+i,n(α + q, β + q, α, β) an+i+q,

and this completes the proof of the theorem.

Remark 1. It is to be noted here that the formula for a
(q)
n given by (16) is the exact solution

of the difference equation (8).

Remark 2. In general, the 3F2 in the theorem cannot be summed, but it can be summed by
Watson’s identity (1925) if α = β.

The particular expressions for the ultraspherical polynomials may be derived as a special
case of the theorem. We give this as a corollary to the main theorem.

Corollary (Doha 1991). If α = β, and each is replaced by (α − 1
2 ), then equations (4)–(6)

give

f (x) =
∞∑

n=0

AnC
(α)
n (x), An = �

(
n + α + 1

2

)
n! �

(
α + 1

2

) an, (22)

f (q)(x) =
∞∑

n=0

A(q)
n C(α)

n (x), A(q)
n = �

(
n + α + 1

2

)
n! �

(
α + 1

2

) a(q)
n , n � 0, q � 1, (23)

where

A(q)
n = 2q(n + α)�(n + 2α)

(q − 1)! n!

∞∑
i=0

(i + q − 1)! �(n + i + q + α)(n + 2i + q)!

i! �(n + i + α + 1)�(n + 2i + q + 2α)
An+2i+q, (24)

DqC(α)
n = 2q n!

(q − 1)! �(n + 2α)

×
n−q∑
i=0

(n+i−q) even

(i + α)�(i + 2α)
(
(n − i + q − 2)/2

)
! �
(
(n + i + q + 2α)/2

)
i!
(
(n − i − q)/2

)
! �
(
(n + i − q + 2α + 2)/2

)
× C

(α)
i (x). (25)

Proof. In this special case, relation (16) takes the form

a(q)
n = 2−q

∞∑
i=0

(n + i + q + 2α)q Cn+i,n

(
q + α − 1

2 , q + α − 1
2 , α − 1

2 , α − 1
2

)
an+i+q, (26)

where

Cn+i,n

(
q + α − 1

2 , q + α − 1
2 , α − 1

2 , α − 1
2

) = (n + i + 2q + 2α)n

(
n + q + α + 1

2

)
i
�(n + 2α)

i!�(2n + 2α)

× 3F2

(−i, 2n + i + 2q + 2α, n + α + 1
2 ; 1

n + q + α + 1
2 , 2n + 2α + 1

)
. (27)
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Watson (1925) proved that, when i is an even positive integer,

3F2

(−i, i + 2µ + 2ν − 1, µ

; 1
2µ, µ + ν

)
= i! �

(
µ + i

2

)
�
(
ν + i

2

)
�(2µ) �(µ + ν)(

i
2

)
! �
(
µ + ν + i

2 ) �(2µ + i) �(µ) �(ν)
, (28)

and when i is an odd integer the sum of the hypergeometric series is zero, and consequently
relation (27) takes the form

C2i+n,n

(
q + α − 1

2 , q + α − 1
2 , α − 1

2 , α − 1
2

)
= (

(i + q − 1)! (2n + 2α)�(n + 2α)�
(
n + i + α + 1

2

)
�(2n + 2i + 2q + 2α)

× �
(
n + 2i + q + α + 1

2

))/{
i! (q − 1)! �

(
n + α + 1

2

)
�
(
n + i + q + α + 1

2

)
× �(n + 2i + 2q + 2α)�(2n + 2i + 2α + 1)

}
. (29)

Substitution of (29) into (26) with the aid of (23) yields

A(q)
n = 2q(n + α) �(n + 2α)

n! (q − 1)!

∞∑
i=0

(i + q − 1)! �(n + i + q + α) (n + 2i + q)!

i! �(n + i + α + 1) �(n + 2i + q + 2α)
An+2i+q, (30)

which completes the proof of relation (24). The proof of formula (25) is similar to that of (24).

It is worthy of note that formula (30) is in complete agreement with that obtained by Doha
(1991, formula (17), p 118). In particular, the special cases may be obtained from (30) directly
for the Chebyshev polynomials of the first and second kinds by taking α = 0, 1 respectively,
and for Legendre polynomials by taking α = 1

2 . These are given explicitly by Doha (1991,
formulae (18)–(20), pp 118–9, and formulae (26)–(31), p 120).

5. Use of Jacobi polynomials to solve differential equations

Consider the linear ordinary differential equation of order n of the form
n∑

i=0

fi(x)Diy(x) = g(x), (31)

where fi(x) and g(x) are functions of x only. Suppose the equation to be solved is in interval
[−1, 1] subject to n linear boundary conditions, and assume we approximate y(x) by a truncated
expansion of Jacobi polynomials

y(x) =
N∑

j=0

ajP
(α,β)

j (x), (32)

where N is the degree of approximation and a0, a1, . . . , aN are unknown coefficients to be
determined. Substituting (32) into (31) yields

n∑
i=0

{
fi(x)

N∑
j=0

ajD
iP

(α,β)

j (x)

}
= g(x), (33)

which may be written in the form

N∑
j=0

{
aj

n∑
i=0

fi(x)DiP
(α,β)

j (x)

}
= g(x). (34)

The boundary conditions associated with (31) give rise to n equations connecting the
coefficients aj , and the remaining equations may be obtained in two ways.
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(i) We may equate the coefficients of the various P
(α,β)

j (x) after expanding both sides of (34)
in Jacobi series.

(ii) We may collocate at m = N − n selected points in (−1, 1).

The system of equations obtained from the collocation is of the form
N∑

j=0

{
aj

n∑
i=0

fi(xk)D
iP

(α,β)

j (xk)

}
= g(xk), k = 1, 2, . . . , m, (35)

where xk are the collocation points, which are usually chosen at the zeros of P
(α,β)
m (x)

(see Canuto et al 1988, appendix C). Since the derivatives DiP
(α,β)

j (x) are now expressible

explicitly in terms of P
(α,β)

k , the problem of computing them is solved by using formula (15).
Therefore, the resulting linear system obtained from (33) and the n linear boundary conditions
can easily be solved using standard direct solvers.

The method just described is easily extended to higher dimensions. Consider, for example,
the second-order partial differential equation

A1(x, y)uxx + A2(x, y)uxy + A3(x, y)uyy + A4(x, y)ux + A5(x, y)uy + A6(x, y)u

= f (x, y), (36)

where the coefficients A1, A2, . . . , A6 and f are functions of x and y only. Suppose the
solution of the equation is required in the square S(−1 � x, y � 1), subject to general linear
boundary conditions of the form

B1(x, y)ux + B2(x, y)uy + B3(x, y)u = g(x, y), (37)

on the sides of the square S.
Suppose the function u(x, y) can be approximated by the double finite Jacobi series

u(x, y) =
M∑

m=0

N∑
n=0

amnP
(α,β)
m (x)P (α,β)

n (y), (38)

for sufficiently large values of the integers M and N . Since u(x, y) satisfies (36) we have
approximately
M∑

m=0

{ N∑
n=0

amn[A1D
2
xP (α,β)

m (x)P (α,β)
n (y) + A2DxP (α,β)

m (x)DyP (α,β)
n (y)

+ A3P
(α,β)
m (x)D2

yP (α,β)
n (y) + A4DxP (α,β)

m (x)P (α,β)
n (y)

+ A5P
(α,β)
m (x)DyP (α,β)

n (y) + A6P
(α,β)
m (x)P (α,β)

n (y)]

}
= f (x, y). (39)

On collocating equation (39) at (M−1)(N−1) distinct points (xi, yj ), i = 1, 2, . . . , M−1,
j = 1, 2, . . . , N − 1, in S, there results a set of (M − 1)(N − 1) linear equations for the
coefficients amn. If we now collocate equation (37) at 2(M + N) points on the sides of the
square S, we find the remaining equations for the unique determination of the coefficients amn.

As in ordinary differential equations, the derivatives of Jacobi polynomials occurring
in (39) are computed by use of (15), and numbers xi and yj are chosen at the zeros of the
appropriate Jacobi polynomials.

6. Numerical examples

The collocation method is applied to two test examples in linear partial differential equations
in two independent variables. Some of the results obtained are listed below.
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Table 1. Non-zero coefficients (×1010) in the approximate solution of example 1.

n m = 0 m = 2 m = 4 m = 6 m = 8 m = 10 m = 12

0 3723 325 062 −10 505 287 448 807 541 643 −20 865 481 269 309 −2083 12
1 −2234 483 264 6 304 549 995 −484 630 872 12 522 022 −161 615 1249 0
2 −296 510 707 836 599 047 −64 309 385 1 661 640 −21 441 166 0
3 30 695 066 −86 605 517 6 657 369 −172 011 2216 −18 0
4 761 026 −2 147 211 165 057 −4 264 56 0 0
5 −85 984 242 607 −18 650 486 0 0 0
6 −208 591 −49 0 0 0 0
7 95 −267 17 0 0 0 0
8 0 0 0 0 0 0 0

Table 2. Non-zero coefficients (×108) in the approximate solution of example 2.

n m = 0 m = 2 m = 4 m = 6 m = 8 m = 10

0 3309 937 8 607 872 −279 852 −20 484 −3 687 −698
1 −296 674 824 683 −44 156 −2 092 −163 −34
2 −7474 468 20 059 929 −95 544 −79 639 −17 015 −3314
3 360 573 −1 018 103 78 163 −326 −358 −73
4 −1664 182 3 909 563 721 525 14 266 −9 963 −2595
5 130 499 −356 233 7 683 4 413 0 −69
6 −196 537 161 854 409 622 94 441 11 761 1258
7 15 319 −32 488 −13 339 1 778 511 54
8 −31 846 −76 016 116 262 92 707 32 568 7109
9 1 801 1 553 −7 808 1 697 467 249

10 −7 804 29 618 17 871 39 374 21 213 5540

Example 1. The current J (x, t) in an insulated cable of resistance R, capacitance 1/R and
self-inductance 4R at a time t satisfies the hyperbolic partial differential equation

Jxx − 4Jtt − Jt = 0.

This problem is solved in the rectangle 0 � x � 2, 0 � t � 1, subject to the boundary
conditions

J (x, 0) = −4 Jt (x, 0) = sin
πx

2
, 0 � x � 2,

J (0, t) = J (2, t) = 0, 0 � t � 1.

A solution of the form

J (x, t) =
8∑

n=0

12∑
m=0

amnP
(α,β)
m (x − 1) P (α,β)

n (2t − 1)

is assumed over the rectangle. In particular, and for the case α = β = − 1
2 , the coefficients amn

based on collocation at the Chebyshev points
(
1 + cos(iπ/8), 1

2

(
1 + cos(jπ/12)

))
, i = 0(1)8,

j = 0(1)12, are shown in table 1; the coefficients not shown are less than 5 × 10−11 in
magnitude. Values computed from the solution agreed with the analytical solution given by
Collatz (1966, p 326),

J (x, t) = e−t/8

(
cos

µ t

8
− 1

µ
sin

µ t

8

)
sin

πx

2
, µ =

√
4π2 − 1,

to nine decimal places.
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Example 2. Another problem is the solution of the elliptic equation

uxx + uyy +
3

5 − y
uy = −1,

in the rectangle |x| = 1
2 , |y| = 1, with u = 0 on the boundary of the rectangle (see Collatz

1966, pp 357–8). A solution of the form

u(x, y) =
10∑

n=0

10∑
m=0

amnP
(− 1

2 ,− 1
2 )

m (2x) P
(− 1

2 ,− 1
2 )

n (y),

is used, and the collocation points are chosen at the Fourier zeros
(

1
2 cos(iπ/10), cos(jπ/10)

)
,

i, j = 0(1)10. Table 2 gives the coefficients of approximation. As before the missing entries
are less than 5 × 10−8 in magnitude.

The numerical results for the previous two examples were obtained by solving the
resulting algebraic system of equations for the series coefficients by the standard elimination
method.
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